Global Conformational Dynamics of HIV-1 Reverse Transcriptase Bound to Non-Nucleoside Inhibitors
نویسندگان
چکیده
HIV-1 Reverse Transcriptase (RT) is a multifunctional enzyme responsible for the transcription of the RNA genome of the HIV virus into DNA suitable for incorporation within the DNA of human host cells. Its crucial role in the viral life cycle has made it one of the major targets for antiretroviral drug therapy. The Non-Nucleoside RT Inhibitor (NNRTI) class of drugs binds allosterically to the enzyme, affecting many aspects of its activity. We use both coarse grained network models and atomistic molecular dynamics to explore the changes in protein dynamics induced by NNRTI binding. We identify changes in the flexibility and conformation of residue Glu396 in the RNaseH primer grip which could provide an explanation for the acceleration in RNaseH cleavage rate observed experimentally in NNRTI bound HIV-1 RT. We further suggest a plausible path for conformational and dynamic changes to be communicated from the vicinity of the NNRTI binding pocket to the RNaseH at the other end of the enzyme.
منابع مشابه
NMR characterization of HIV-1 reverse transcriptase binding to various non-nucleoside reverse transcriptase inhibitors with different activities
Human immunodeficiency virus type 1 reverse transcriptase (HIV-1 RT) is an important target for antiviral therapy against acquired immunodeficiency syndrome. However, the efficiency of available drugs is impaired most typically by drug-resistance mutations in this enzyme. In this study, we applied a nuclear magnetic resonance (NMR) spectroscopic technique to the characterization of the binding ...
متن کاملConformational changes in HIV-1 reverse transcriptase induced by nonnucleoside reverse transcriptase inhibitor binding.
Nonnucleoside reverse transcriptase inhibitors (NNRTI) are a group of small hydrophobic compounds with diverse structures that specifically inhibit HIV-1 reverse transcriptase (RT). NNRTIs interact with HIV-1 RT by binding to a single site on the p66 subunit of the p66/p51 heterodimeric enzyme, termed the NNRTI-binding pocket (NNRTI-BP). This binding interaction results in both short-range and ...
متن کاملInhibitor binding alters the directions of domain motions in HIV-1 reverse transcriptase.
Understanding the molecular mechanisms of HIV-1 reverse transcriptase (RT) action and drug inhibition is essential for designing effective antiretroviral therapies. Although comparisons of the different crystal forms of RT give insights into the flexibility of different domains, a direct computational assessment of the effect of inhibitor binding on the collective dynamics of RT is lacking. A s...
متن کاملDrug- Resistance- Associated Mutations and HIV Sub-Type Determination in Drug-Naïve and HIV-Positive Patients under Treatment with Antiretroviral Drugs
Abstract Background and Objective: Resistance to antiretroviral agents is a significant concern in clinical management of HIV-infected individuals. Resistance is the result of mutations that develops in the viral protein targeted by antiretroviral agents. Material and Methods: In this cross-sectional study, the blood samples of 40 HIV-positive patients were collected. Twenty of them were d...
متن کاملEffect of a bound non-nucleoside RT inhibitor on the dynamics of wild-type and mutant HIV-1 reverse transcriptase.
HIV-1 reverse transcriptase (RT) is an important target for drugs used in the treatment of AIDS. Drugs known as non-nucleoside RT inhibitors (NNRTI) appear to alter the structural and dynamical properties of RT which in turn inhibit RT's ability to transcribe. Molecular dynamics (MD), principal component analysis (PCA), and binding free energy simulations are employed to explore the dynamics of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 1 شماره
صفحات -
تاریخ انتشار 2012